Universal Weighted MSE Improvement of the Least-Squares Estimator
نویسندگان
چکیده
منابع مشابه
Computing the Least Median of Squares Estimator
In modern statistics, the robust estimation of parameters of a regression hyperplane is a central problem, i. e., an estimation that is not or only slightly affected by outliers in the data. In this paper we will consider the least median of squares (LMS) estimator. For n points in d dimensions we describe a randomized algorithm for LMS running in O ( nd ) time and O(n) space, for d fixed, and ...
متن کاملResurrecting Weighted Least Squares
This paper shows how asymptotically valid inference in regression models based on the weighted least squares (WLS) estimator can be obtained even when the model for reweighting the data is misspecified. Like the ordinary least squares estimator, the WLS estimator can be accompanied by heterokedasticty-consistent (HC) standard errors without knowledge of the functional form of conditional hetero...
متن کاملThe Multivariate Least Trimmed Squares Estimator
In this paper we introduce the least trimmed squares estimator for multivariate regression. We give three equivalent formulations of the estimator and obtain its breakdown point. A fast algorithm for its computation is proposed. We prove Fisherconsistency at the multivariate regression model with elliptically symmetric error distribution and derive the influence function. Simulations investigat...
متن کاملWeighted Least Squares and Adaptive Least Squares: Further Empirical Evidence
This paper compares ordinary least squares (OLS), weighted least squares (WLS), and adaptive least squares (ALS) by means of a Monte Carlo study and an application to two empirical data sets. Overall, ALS emerges as the winner: It achieves most or even all of the efficiency gains of WLS over OLS when WLS outperforms OLS, but it only has very limited downside risk compared to OLS when OLS outper...
متن کاملWeighted total least squares formulated by standard least squares theory
This contribution presents a simple, attractive, and exible formulation for the weighted total least squares (WTLS) problem. It is simple because it is based on the well-known standard least squares theory; it is attractive because it allows one to directly use the existing body of knowledge of the least squares theory; and it is exible because it can be used to a broad eld of applications in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2008
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2007.913158